Estimation of a quadratic regression functional using the sinc kernel

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of a quadratic regression functional using the sinc kernel

We use the sinc kernel to construct an estimator for the integrated squared regression function. Asymptotic normality of the estimator at different rates is established, depending on whether the regression function vanishes or not.

متن کامل

Functional Quadratic Regression

We extend the common linear functional regression model to the case where the dependency of a scalar response on a functional predictor is of polynomial rather than linear nature. Focusing on the quadratic case, we demonstrate the usefulness of the polynomial functional regression model which encompasses linear functional regression as a special case. Our approach works under mild conditions fo...

متن کامل

A Sparse Kernel Density Estimation Algorithm Using Forward Constrained Regression

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Blind estimation of room acoustic parameters using kernel regression

Room acoustic parameters are key information for dereverberation or speech recognition. Usually, when one needs to assess the level of reverberation, only the reverberation time RT60 or a direct to reverberant sounds index Dτ is estimated. Yet, methods which blindly estimate the reverberation time from reverberant recorded speech do not always differentiate the RT60 from the Dτ to evaluate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2007

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2006.06.004